Adjoint. Symmetric and Self-Adjoint Operators

We assume that H is a Hilbert space. In this notes we will define
self-adjoint unbounded operators and study its properties.

Definition 1. Let A : D(A) C ‘H — H be a linear operator densely
defined (d.d.) i.e. D(A) = H.

We define the adjoint A* of the operator A by

{D(A*) — {n e M : I e Hsuchthat(Ap,n) = (¢,v) Vo € D(A)},
A'n = 1.
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Remarks 1.

1. A* is well defined.
If there exists 1) € H such that

(Ag,n) = (¢,9) = (6, 0)).

Then )
(P, —)=0forallp € D(A)
which implies that ) = 1) since D(A) is dense in H.
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2. We have that

DAY )={neH: Ln: ¢ D(A) — (Ap,n)is continuous}.
(0.1)
Indeed, we can extend Ly : D(A) = H — C continuous. i.e.
Ln € H* implies there exists ¢y € H such that

Ln(¢) = (6, ¢) Vo € H

by the Riesz Theorem.
In particular, it holds that

(A¢,n) = (¢,¥) Vo € D(A).
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3. It holds that
(Ap,n) = (¢, A'p), V¢ € D(A), Vne€ D(A").  (0.2)

Verify that A* : D(A*) C ‘H — H defines a linear operator.
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Exercise 2. If A € B(H), show that A* € B(H) and it holds that

(Af,g9)=(f,A%g) VfgeH
and
[A[] = [|A™]].
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Properties. Let A : D(A) CH — Hand B: D(B) C H — H be
two linear operators d.d. Then it holds that

(i) A* is closed.
(i) (AA)* = MA* for all \ € C.
(iiiy A C B implies that B* C A*.
(iv) A*+ B* C (A+ B)".

(v) B*A* C (AB)".

(vi) A C A™ where A* = (A*)".
(Vi) (A+ X)) = A"+ A
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Theorem 3. Let A : D(A) C ‘H — H a linear operator d.d., then it
holds that

(i) A* is closed;
(i) A is closable if and only if A* is d.d. in this case A = A**;

(iii) If A is closable, then (A)* = A*.

Proof. To prove this theorem we will need some definitions and lem-
mas.
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We start by considering the Hilbert space H x H equipped with the
inner product

((@1,901), (@2, 12)) = (D1, P2)u + (W1, 9a)n.

We define the operator

ViHXH—->HXH
Notice that V' is a unitary operator. In fact,
<V(¢17 ¢1>7 V(ng, ¢2)> — <(_¢17 le), (_¢27 ¢2>>

= (1, V) + (@1, o)
= ((¢1, 1), (2, 12)).
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Lemma 1. IfV . 'H — ‘H is a unitary operator, then
V(EY) =V(E)", VECH,
where E* denotes the orthogonal set to I/ which is defined as

Et={¢peM:(o,n) =0, Vne E}.
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Proof. Let z € E+-and y = V(e) € V(FE), then
(V(z),y) =(V(z),V(e)) = (z,e) = 0.
Thus V(z) € V(E)* and so V(E*) C V(E) .
Reciprocally, let y € V(E)*, since V is a bijection it implies there
exists a unique x € H such that y = V' (z).

If foralle € E,
(z,e) = (V(z),V(e)) =0

this implies that z € E+ and so y € V(E™*). Thus V(E)" C V(E").
This concludes the proof of the lemma. []
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Proof of (i) We denote by
G(A) ={(z,Ax) .z € D(A)} CH x H.

the graph of the operator A.
We can see that

(6,m) € V(G(A))" <= ((4, ) (=AY, ) =0 Vi € D(A)
= —(¢,AY) + (n,¢) =0 V¢ € D(A)
= (¢, AY) = (n, 7)) Vi) € D(A)
— (AY,9) = (¢,n) Vi) € D(A)
= (¢,1) € G(A").

This shows that G(A*) = {V(G(A))}~ is closed. (since the orthogo-
nal of a set is always a closed subspace). Thus A* is a closed opera-
tor.
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Lemma2. If E C H, then E = (E*)*.

Proof. If e € E and x € E*, then (e,z) =0 and so e € (E+)*. Hence
E C (E*Y)*. Therefore £ C (E+)*.

Now we know that H = E & (E)* because of the orthogonal projec-
tion Theorem.

On the other hand, y € (E)* implies that (y, z) = 0 for all z € E and
this means that y € E*. Similarly, y € E-+ implies that (y,z) = 0 for

all x € E and so we have (y, z)=0 for all x € (E)*. We deduce from
this that (E)* = E*.
Thus

H:E@EL:EL@(EL)L.

We conclude that £ = (E*)*. O
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Remark 1. From the orthogonal projection Theorem we deduce that
for any ' C ‘H closed and for all x € H, there exists a unique y =
Pr(x) € F suchthat(x—Pr(x),z) =0forallz € F, thenz—Pr(z) €
F+, where Pr(x) denotes the projection on F" at x.

Since G(A) C H x H, we have from Lemma 2, Lemma 1 and the fact
that V' is unitary that

G(A) ={G(A) 1 = {V(G(A))}
={VIV(GAI} ={VIGA}

Thus,
G(A) = {V[GA)]}* (0.3)

and
G(A") ={V[G(A)}* (0.4)

This means that A* d.d. implies that A is closable.



Proof of (ii). If A* is d.d then we deduce from (0.4) and (0.3) that

{(VIG(A")]} = G(A™) = G(A).
Then A is closable and A = A**,

Reciprocally, if D(A*) were not dense in H, let v € D(A*)*, ¢ # 0,
then (¢, 0) € G(A*)* which implies that (0,1) € {VG(A")} = G(A)
but by Lemma 1.17 in [4] we have that G(A) is not the graph of any
linear operator, that is, A is not a closable operator. This implies (ii).
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Proof of (iii). Let A be a closable operator, since A* is closed and (ii)
holds we deduce that

This completes the proof of Theorem 3. []
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Example 1. We consider once again the operator A defined by

D(A) = C°([0,1]) ¢ L*[(0,1)] — L*([0,1])
Af =¢ f(1) where ¢ € L*([0,1]), ¢ # 0.

In Example 1.21 in [4] we saw that the operator A is not closable. We
shall show now that A* is not densely defined.

Letn € H = L*([0,1]), then

(A = [ Fotemte) de
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Observe that the map
fec(o,1]) c L¥[0,1]) = f(1) eC

is not continuous in the L? topology. (To see this, take for instance

fu(x) = 2. ltis easy to check that f, % 0 and fa(l) = 1.) As a
consequence the only choice in order to have the map f — (Af,n)
continuous is taking n € L*([0, 1]) such that

[ otarita) z =o.

But this implies that
D(A") = {¢}~
A*n = 0.

In particular {¢}+ is not dense in L*([0, 1]).
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Application. Differentiable operators are closable

Consider a differentiable operator of order m,

P(z,D) =Y au(x)DS

la|<m
aeN?

where a, € C*(2) and 2 C R" is an open set.
We can define P,;, by

{D(Pmm) = C°() € L*(Q)
Pmeb - P<$7 D>¢
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Taking ¢, 1 € C°(£2), then
( m1n¢ ¢ 0 — Za’a aa¢ ¢)

|| <m

/Zaa 262 () da

lal<m

= O;ﬂ/ )05 o (x dx
|0“/¢ )05 (an(

(Pmin¢7 qvb)O - (¢7 C)O
where ¢ = > (=192 (@ ).

|| <m

\a|<m

This gives us
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Hence defining P,

min

D(P},) = Ci(9),
Prob = Y (1) (@, ).

la|<m

This implies that P*. is densely defined and from Theorem 3 it follows

min

that P, is a closable operator.
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Symmetric and Self-Adjoint Operators

Definition 2. Let A : D(A) C ‘H — H be a linear operator.

(i) We say that A is a symmetric operator if

(A, ) = (6, Av), forall ¢,v € D(A).

This is equivalent to say that A C A*.

(i) We say that A is a self-adoint operator if A = A".
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Exercise 4. We say that a linear operator A is a maximal symmetric
operator if

AC A"
and
ACB, BCA" thenA=B.

Prove that if A = A* then A is maximal symmetric.
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Example 2. The operator H, is symmetric, i.e. Hy C H;. We recall
that

Hyf = -Af
Forall f,g € C°(R™),

{D(HO) — H*(R") C L*(R")

(Hof,9)0 = Af( ) ( ) dx
_ —Z / n e
:Z | (@) 8 g9(x) du.
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Then

(Hof,g9)0=(f,Ho) Yf,ge€SR").
Now let f,g € H?*(R"), there exist {f;}, {9;} € S(R") such that
fjiifandgjiz)g.2

Notice that CgO(IR{")H = L*(R") (prove it!). Thus for any j € Nit holds
that

(Hofj,95)0 = (f5, Hog;)o
and making 3 — oo it follows that
(HOfJ g)O - (fa HOQ)O'
From the last identity we deduce that H*(R?) = D(H,) C D(H;) and
H, C H;.
Is H, a self-adjoint operator?
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We need the following definition

Definition 3. Let k € N, 1 < p < oo. Given a domain ¢) C R", the
Sobolev space WW"?(Q)) is defined as,

WE(Q) = {u € LP(Q) : Du € LP(Q), Y|a| < k}.

We equipped the Sobolev space with the norm

( 1

(Z 1P ulling)"s 1<p <00
o<

[[u][wray = <

p —
g‘%}k{HDau”LP(Q)? b= 0oo.

It is usual to denote W*2(Q) by H*(QY) for it is a Hilbert space with the
norm W*2(Q).
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Example 3. Consider the operators A; = %% 3 =0,1,2 with
D(Ay) = H'([-m,7]) C L*([~, 71]):
D(A1) ={¢ € H'([-7,7]): ¢(—7) = d(m)};
D(A;) ={¢ € H'([-7,7]) : ¢(—7) = ¢(m) = 0}
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We will see that
(i) A, and A, are symmetric operators.
(i) Ay is not a symmetric operator.

(i) Ay = A? (C Ap) this implies that A3 = A% = Ay = Agbut Ay 2 A,
and so these operators are not self-adjoints.

(iv) A = A,.
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Proof of (i). Let ¢, 1 € D(A,) then

— [ ¢l
'—w——/_ﬁ

[6(m) () — o(—) ¥( __/¢

This holds for absolutely continuous functions.

(Ao, 0) =

(
1
’I,
_1

(4
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Then
(Ao ¢, ¥)==[p(m) () — p(—m) Y(—7)]+(p, Agb)2  (0.5)

for all ¢, v € H'([—m, 7).

1
1

Therefore if ¢, € D(A;), j = 1,2, we deduce that

(Aj ¢7 w>L2 - <¢7 "4]'770)1/2 ] - 17 27
which implies that A; C A7 and A, C A3.
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Proof of (ii). In addition, there exist ¢, v € H'([—m, x]) such that

$(m)(m) # ¢(—m) (=)

it yields
(AO Qb, ¢>L2 # <¢7 AO ¢>

which implies that A, C Aj.
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Proof of (iii). Now let ¢ € D(A,) and ¢ € D(A,), then from (0.5) it
follows that

(Aog, ¥) = (¢, Axt))

which implies that A, C A;.
To prove that A% C A, it is enough to verify D(A;) C D(A,).
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Claim. If n € D(A}), then

/ Arnly) dy = 0. (0.6)

Indeed, since 1 € H'([—m, 7)), it follows that

/_z Ain(y) dy = (1, An) = (Ay(1),m) = 0.

Let n € D(A4;), we define w(x) = z/ Ain(y) dy. Then w(—m) =
w(m) =0and sow € D(A,) (prove it!).

oFirst ®Prev eNext eLast e Go Back eFull Screen eClose eQuit



Moreover,

1
Ayw = ;’w/(x) = Ayn(z)

But since A, C Aj we have Ajw = A,w.Thus

0= (&, Ag(w —n))

0.7
— (Awb,w—n) Y€ D(Ay), ©-7)

This implies that w = n € D(A,) and so D(A;) C D(A,).
To deduce the last affirmation we have used that

Co([=m,m) € (R(Ay)) = L*([—m,7])

then taking u € C{°([—m,w]) we have that v(z) = / u(y)dy €
D(Ao) and A()U = U. B
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Proof of (iv). Notice that A, = A; C A, C Ay. Then A C A} C
Apr = Ay = Ay. Thus for all op € D(A3),

1 /
Aj ==

From (ii) we already know that A; C Aj, we need to show now that
D(A7) C D(Ay).
By the identity (0.5) it follows that for all ¢ € D(A;), and for all ¢ €
D(A}),

<A1¢7 ¢>L2 — (¢7 Aiim

since A} C A, and

P(m) () — (=m)ib(=7) = §(m)(sh(m) — Pp(—)).
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This implies that B B
o(m)(h(m) — ¢(—m)) = 0.

Choosing ¢ = 1 € D(A,) it follows that ¢)(7) = ¢ (—m), that is,
Y € D(A; that concludes the proof.

Remark 2. From this example we can see that it is not easy at all to
establish when a linear symmetric operator is self-adjoint just by using
the definition. In what follow we will establish a criteria to determine
when a symmetric operator is self-adjoint.
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Basic Criteria

The next result is an effective tool to determine when a symmetric
operator is self-adjoint.

Theorem 5. Let A : D(A) C H — H a linear operator d.d. such that
A C A*, then the following assertions are equivalent:

() A = A*;
(i) A is closed and Ker(A* £1i) = {0};
(iii) R(A £ 1) = H.
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Remarks 6.

1. The linear operator A does have any special feature, i.e. the
criteria holds for =Xi, A > 0.

2. To prove (iii) = (ii) it is necessary to have R(A + i) = H and
R(A —i) =H.
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Proof.

(i) = (ii). If A= A%, then Ais closed.

Let now ¢ € D(A*) = D(A) such that A*¢ =i ¢. Then
il|o|I* = (id, 9) = (A"¢,¢) = (Ag, ¢)

This implies that ¢ = 0, that is, Ker(A* — ) = {0}.

Similarly, we will have Ker(A* + i) ={0}.

oFirst ®Prev eNext eLast e Go Back eFull Screen eClose eQuit



(ii) == (iii). We will follow the following strategy:
1. We first prove that R(A + )= = {0}.
2. Then we show that R(A + i) is closed.

Thus we can conclude that R(A + i) = H. The latter follows from the
orthogonal projection Theorem.
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Affirmation. Let B : D(B) C H — H be a linear operator d.d., then
R(B)" = KerB*.

Proof of the Affirmation. (C) Let ¢ € R(B)", then for all ) € D(B)
we have that (B, ¢) = 0. It follows that ¢ € D(B*) and B*¢ = 0
which implies that ¢ € KerB*.

(D) Let ¢ € KerB*then forall ¢ € D(B)
(B, ¢) = (¢, B"¢) =0

we conclude that ¢ € R(B)*. This completes the proof of the affir-
mation. O
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Now we suppose (ii), we deduce from the affirmation that

R(A£i4)" = Ker(A+1i)* = Ker(A* 1) = {0}
where we use property (vii) in page 2. The identity above gives us (1).
Next we shall show (2), i.e. R(A + 1) is closed.

Let {f;} C R(A + 1) such that f; 7 f. For all j there exist ¢, such
that f; = (A £ i),
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On the other hand, for all € D(A) we have that

(AL )| = (AL i)o, (A L))
= (A, Ad) £ i(d, Ad) F i(d, Ad) — *(¢, ).

Using that A C A* we conclude that

I(A£D)SI* = [[Ap]” + [ 6] (0.8)
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From (0.8) we have that

L5 = £ill* = 1 A(g; — @)lI* + 16, — dul|* V5, 1. (0.9)
Then we deduce from (0.9) that

|6 — ol < |If; = fill e 0,
[A(g; — o)l < |f5 — fill nd 0.

Thus {¢,} and {A¢,} are Cauchy sequences in H. Since H is com-
plete it follows that there exist ¢, 1) € H such that

6; = ¢
Ag; By
as j — oo.
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Since A is closed it follows that ¢ € D(A) and ¢ = A¢.
Thus
(A+i)p;, — (A+i)p € R(A+1).

j—00

Therefore R(A =+ i) is closed.
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(iii) = (i). We already know that A C A*. Left to show that
D(A*) C D(A).
Let f € D(A*), by hypothesis R(A — ¢) = H. Hence there exists
¢ € D(A) such that

(A —i)f = (A—i)p = (A" —i).

ACA*

From this we conclude that
f—¢€ Ker(A*—i)=Ker(A+1i)* = R(A+14)" = {0}

Thus f = ¢ € D(A). Above we used the affirmation and the fact that
R(A+1i)="™H. O
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Corollary 1 (Spectrum of a self-adjoint operator). If A = A*, then
g(A) CR.
Proof. The basic criteria implies that for all A > 0,

Ker(A+i\) ={0}
R(A+i)) =H.

From this we conclude that £i\ € p(A) for all A > 0. If we denote
R* = R\{0}, then iR* C p(A).
Moreover, for all > 0 we obtain

(A+n) =A"+7=A"+n.

[]
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From this it follows then that

Ker(A+n=+1i\) ={0},
R(A+n=Li\)="H.

Hence nti\ € p(A), forallp € Rand A > 0. Therefore C\R C p(A).
In other words, o(A) C R. []
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Definition 4. A linear symmetric operator (A C A*) is called an es-
sentially self-adjoint operator, if and only if, A is self-adjoint. That is,
A=A =A.

We can state another version of the Basic Criteria with the same proof
as follows.

Theorem 7. Let A be a symmetric operator (A C A*), then the follow-
ing statements are equivalent.

(i) A = A* (A is essentially self-adjoint);
(i) Ker(A* + i) = {0};
(iii) (A* £ 1) is dense in H.

Example 4. The operator H,_. is essentially self-adjoint (prove it!).



Example 5. We will use the Basic Criteria to show that the operator

A = Zd , with

D(A) ={¢ € H'([-m,7]): ¢(—7) = ¢(m)} C L*([-7,7])
is a self-adjoint operator.
If p,v € D(A),

mmwm=<¢wp= /¢
1

z |_W——/ ofa

:%wmwwn—a— - ——/<¢

- (¢7 Alw)L2

This holds for absolutely continuous functions.
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The last identity shows that A, is a linear symmetric operator, then we
can apply the basic criteria to prove our claim. To do so we will verify
that A, satisfies the condition (iii). That is,

R(A, x£4) = L*([~m, 7).

Indeed, given f € L*([—n, «]) we will show that there is ¢ € D(A,)
such that

(A x4)o = .
In other words, we will try to solve the differential equations
1d
-——o¢tip=f (0.10)
1 dx
for ¢ € D(A,).
As we observed in class we need to solve (0.10) for —z and for <.



We consider first the case ¢ in (0.10), thus

1d .

;@ﬁb‘ﬂﬁb:f
or

o —o=if

whose solution is given by

o(x) = Ae® + ie” /w e’ f(y)dy.

Next we choose A such that ¢(—m) = ¢(n), that is,

Ae ™ = Ae™ + z'e”/ e’ f(y)dy

or

A= [ eriway

™

e T e7r
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y 50

o) = (—

677_671'

/:re_y f(y) dy)em +z'ex/jre_yf(y) dy. (0.11)

Next we check that ¢ € H'([—m, 7]). We observe first that ¢* €
L*([—m, 7]), then the first term on the right hand side of (0.11) is fine.

/:r z'ex/_ e’ fly dy‘ dx</”e2 (/ le™ fy )|dy)2 dr
< [ Jer | 17w s

<c ||f||L2 ([=m,m]):
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On the other hand, we have that

y o T0

o) = (= [ e sy )er+ier [ e gy +ifo)

It is not difficult to show that ¢'(z:) € L*([—m, 7]). This shows that
R(Ay +1i) = L*([-m, 7)),
A similar analysis proves that

R(A, — i) = L¥([—, 7]).

From the Basic Criteria we concludes that A; = A}
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